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A b c t .  We examine the constraints imposed on the 44 interactions of a two- or three- 
component spin system by the demand that the spin-spin correlation function is isotropic. 
The phase transition behaviour of such systems is considered and proves to be essentially 
unique. The two-component model provides a very clean example of a redundant operator 
in the renormalization group formalism. 

1. Introduction 

Considerable attention has already been given to the conditions imposed upon the 
interactions of a field theory by the constraint that they must be consistent with a 
quadratic term (in the Hamiltonian) which is highly symmetric. The main application 
of this idea has been made in relativistic quantum field theory, with attempts to generate 
SU(n) symmetric Y ukawa couplings between fermions and bosons from the demand 
that the renormalization effects of the Yukawa couplings be consistent with having 
the same mass for all the bosons, and another for all the fermions (see Sudarshan et a1 
1964, Fleischman et a1 1967 and references therein). 

The principal aim of this paper is to extend this work to the self-interactions of a 
set of boson fields. Our main interest in this problem arises not in relativistic quantum 
field theory but in the statistical mechanics of an interacting n-component Bose field 
4Xx) ( i  = 1,. . . , n). The relevance of such models for many thermodynamic problems 
is well known ; here we shall work always in terms of a magnetic system in which &Ax) 
is interpreted as a spin or magnetization density. The statement of equal boson masses 
translates in this language into an isotropic (zero field) susceptibility tensor xi, = kdij. 

This property is particularly important in the phase transition region of the spin 
system because it implies that the symmetry of the system ensures that all modes 4i 
go critical (have infinite susceptibility) at the same temperature. Without this con- 
dition, in general only some of the eigenvalues of the susceptibility tensor will become 
infinite simultaneously and the behaviour of the system close to the critical temperature 
will effectively be that of a system with fewer than n spin components. (A general review 
of the renormalization group approach to phase transitions is given by Wilson and 
Kogut (1974). Treatment of the case of anisotropic susceptibility is given in this 
approach by Fisher and Pfeuty (1972) and Wegner (1972b); a more recent review of 
this problem is contained in the paper by Pfeuty et a1 (1974).) 

We shall start from a theory with arbitrary 44 interactions, ui,&t$,c#&, specified 
by coupling constants uiiLl. An alternative specification is given in terms of an arbitrary 
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(complete) set of tensors NCijkl by writing Uijkl  = u,Npijkl (the summation convention on 
repeated indices should always be understood). We do not consider interactions of 
O(@); these are expected to be irrelevant for the phase transition behaviour in the sense 
that they do not modify exponents or the principal scaling functions (although they can 
produce secondary effects in (for example) transverse susceptibility below the critical 
temperature through their symmetry properties). 

Many aspects of the critical behaviour of such a system with arbitrary (p4 interactions 
have been considered by Brezin et a1 (1974). In this paper we enumerate the allowed 
interactions N’ijk. which are consistent with an isotropic susceptibility for a two- or 
three-component field. The former is trivial to do, the latter is not, but the result is the 
same in both cases ; only two independent interactions are permitted, the O(n) symmetric 
one (4’)’ and 4; + . . . + 4; (n = 2 or 3). The latter has cubic point-group symmetry 
which is well known to have only one invariant two-tensor, which is symmetric under 
interchange of indices, namely dij. 

The outline of the paper is as follows. In § 2 we derive the above result and review 
briefly the implications for phase transition behaviour. Section 3 contains a discussion 
of redundant variables (Wegner 1974) which arise very naturally in this problem. The 
n = 2 case provides a particularly clean example which illustrates a possible pitfall 
when including redundant variables. 

2. Isotropy constraint 

The problem of finding 44 terms consistent with isotropic susceptibility is essentially 
a group-theoretic one. It may be posed as: enumerate all the invariant (totally sym- 
metric) four-tensors of all groups which have a real irreducible representation of 
dimension n. The resolution of this problem is less facile than the posing of it. Instead 
we adopt the more pragmatic approach that the 44 interactions must be consistent 
with an isotrcpic two-spin correlation function in perturbation theory. Thus we 
demand that all graphs with two external legs are proportional to 6,, order by order 
in perturbation theory. This will eventually provide suflticient equations to determine 
the allowed types of N P i j k l .  This approach is rather weak in practice however for 
large n (many spin components) because, roughly speaking, the number of 44 couplings 
increases as n4 whereas the number of constraints from a given two-point graph rises 
only as n2. In this section we show that this constraint is sufficiently strong that, for 
the two cases n = 2,3,  only two essentially unique 44 couplings are allowed. In 0 3 
we show that this uniqueness property does not hold for n 2 4. 

For n = 2 there are only five fourth-rank tensors N,, which are totally symmetric 
in the indices. The isotropy condition at the lowest order (figure 1) is just a trace con- 
dition (Brezin et a1 1974): Nii jk  oc d,k. This imposition eliminates two tensors. The 

Figure 1. 
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three remaining candidates may be combined to form S, C and A, where each is defined 
by the interactions : 

2 

S i j k 1 4 i 4 f i k 4 1  = (7 4;) ‘symmetric’ (14 

A i j k 1 4 i 4 j 4 k 4 1  = 4;42-4:41. (14 
A linear combination of these would form the most general interaction Hamiltonian 
consistent with lowest-order isotropy. A more convenient and equally general basis 
is to replace (lb) by a traceless counterpart : 

TijkI E C i j t I - ~ S i j k I *  (14  
To investigate isotropy at higher order we consider the most general Hamiltonian, 
specified by (indices suppressed) 

HI@,, u T ,  U, ; 4) = (usS + u,T+ uAA)(4,/4!). (2) 
Without specifically looking at higher-order diagrams, let us redefine fields by a 
rotation 

i i  = Ri,(aMj 
with 

cos a sina 
-sina cosa 

R(a) = (3)  

Clearly the kinetic and mass terms remain form invariant, while the interaction term 
becomes 

H,(fi , ,  67-9 ii, ; 6) (4) 

8,  = us (54 
with 

and 

so that, by an appropriate choice of a, ii, can be set to zero. Such a system is well 
known to have isotropic susceptibility at all orders. 

The analysis for n = 3 is only technically more complicated. We now begin with 
15 tensors of which one is S and five are eliminated by the trace condition. The remain- 
ing nine can be considered to be traceless tensors. To go beyond this lowest order we 
employ the convenient basis of the nine fourth-order ordinary spherical harmonics 
Y,,, m = - 4,. . . ,4 (see eg Wegner 1972b). Explicitly we define ‘spherical coordinates’ 
by 

so that any traceless interaction may be represented by 
41 = $sin8cos$ 42 = + sin 8 sin 9 43 +cos8 (6)  

uA4Y4m(8, $1. (7) 
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For example, in this basis the traceless cubic interaction UTTijk&i6j&q$ (for n = 3, 
T = C-$3) is represented by u ~ ( & ) " ~  = u4 = u - ~  a uT and all others zero. Due to 
hermiticity of H,, U: = ( -  l)'"u-,,,. Next we apply the rotations; for n = 3 there are 
three of these (eg the Euler angles). Using two of the rotations, it is always possible to 
bring a general interaction to a form with u1 real and U,, zero. These rotations are 
unitary transformations on the nine-dimensional space {U,,,} so that we can choose 
our normalization by u1 = 1 for example. Without loss of generality our interaction 
Hamiltonian depends on us  and the six parameters u 2 ,  u 3 ,  u4 (each of the last three 
being complex). Now we impose the isotropy constraint at second order (figure 2). 

UijklUjklm a (8) 

Figure 2. 

Note first that if U were any linear combination of S and a traceless N which satisfied (8), 
then U also satisfies it. In effect we can neglect S completely and (8) represents five 
quadratic equations in the six unknowns ( u z ,  u 3 ,  u4). The equations turn out to be 
all independent and there is a unique one-parameter family of solutions which are 
related to each other by the third rotation. We thus arrive at the same conclusion as 
for the n = 2 case: any interaction satisfying the isotropy condition (at first and second 
order) can be brought into the standard symmetric-plus-cubic form by a redefinition 
of fields. Again, such a system is known to satisfy isotropy to all orders. 

The significance of this 'uniqueness' property for critical phenomena may be seen 
best in the light of the multiplicative renormalization group formulation (Zinn-Justin 
1975). A system of differential equdions 

is set up in the space of couplings (U,). The fixed points of these equations (U* with 
P(U*) = 0) and their associated stability matrices ( 8 ~ , , ( 8 ~ J ~ = ~ , )  govern the behaviour 
of the spin system undergoing phase transition. If such a system specified by a point 
in coupling space lies in the domain of stability of a certain fixed point, then its behaviour 
in the critical region (eg exponents) can be obtained through the stability matrix of that 
fixed point only. In particular, for a system with S and C interactions only, there are 
four fixed points (in the c-expansion) and four sets of exponents associated with these 
(Wilson and Fisher 1972, Aharony 1973). A priori, investigations of systems with other 
types of interactions should lead to other fixed points and therefore, possibly, other 
exponents. However, for n = 2 or 3, since we can bring a system with arbitrary inter- 
actions into the S +  C form by a rotation of the fields, all other fixed points are equivalent 
to one of the above four and there are no new features in critical behaviour. 
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3. Discussion and conclusion 

The results of $ 2  are summarized by the statement that two- and three-component 
spin systems with isotropic susceptibility have essentially only the symmetric and 
cubic 44 interactions in equations (la) and (lb); all other 44 interactions are equivalent 
to these two by an appropriate redefinition of fields such as in equation (3). 

For systems with n 2 4 spin components this result is no longer true. Two counter 
examples can be given : 

(i) The 44 interactions of the generalized Potts model (Potts 1952) consist of the 
symmetric term (equation (la)) and a term 

n+ 1 

C tPtTW'4Aj4dl 
p =  1 

where t P  is the set of n + 1 vectors defining the n + 1 vertices of the hypertetrahedron in 
n dimensions. This model is multiplicatively renormalizable (no new couplings being 
introduced by renormalization effects), is consistent with isotropic susceptibility and, 
for n 2 4, is not equivalent to the symmetric/cubic system (Zia and Wallace 1975). 

(ii) For n = 4 there is a third independent coupling A41424344 which, when com- 
bined with the symmetric and cubic couplings, produces a multiplicatively renormal- 
izable system. In {us, U,-, A}  space there is an interesting configuration ofrenormalization 
group fixed points. They lie on the three planes (A = 0,2A = &U,) which are mapped 
(1-1) into each other by discrete O(4) rotations of the fields. On the other hand no 
other region in the (3-d) space is related to these planes by rotation because, otherwise, 
there will be more fixed points. That any system specified in this full space is con- 
sistent with isotropic susceptibility can be easily checked. It is conjectured that systems 
not lying in the three planes will undergo a first-order phase transition, but further 
discussion seems inappropriate here. 

In mathematical terms these examples show that algebraic varieties produced in 
the coupling constant space by the isotropic susceptibility constraint can become 
rather complicated for n 2 4. 

It is perhaps worth clarifying one point. For two- or three-component spin systems 
we have enumerated the only 44 couplings which are completely consistent with iso- 
tropic susceptibility (of course these theories do not have isotropic susceptibility in the 
region of spontaneous symmetry breaking, T < T,). One majj further ask if there are 
other 44 interactions which have a negligibly small effect on the leading singularities 
of the susceptibility tensor in the critical region. In the language of the renormalization 
group this is equivalent to enumerating the additional 44 interactions with respect to 
which the isotropic/cubic system is stable in the renormalization group sense. For 
n 5 3 the most stable fixed point of the isotropic/cubic system is the isotropic Heisenberg 
one (Ketley and Wallace 1973, Nickel 1975). Now perturbations away from this iso- 
tropic fixed point are either fourth-order spherical harmonics or second-order spherical 
harmonics ( U ~ , ~ ~ # J ~ @ C # J ~ ~ ~ '  or ur&*@ ( t # ~ ~ )  with u~,~. = 0, uii = 0)  or symmetric (42)2. 
Each of these three types of perturbation is an eigenvector of the renormalization group 
with a unique eigenvalue for each type (Wegner 1972b, Wallace and Zia 1975). The 
isotropic fixed point is known to be stable for n 5 3 to each of these perturbations. 
(See Br6zin et a1 (1974) for the second-order spherical harmonic ; stability properties 
have also been studied explicitly for some special cases by Nelson et a1 (1974).) Thus 
for n 5 3 any 44 perturbations small enough to be in the domain of stability of the 
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Heisenberg fixed point will produce a susceptibility tensor whose leading singularities 
in the critical region are isotropic. 

Finally let us return to the two-component system and consider the effect of including 
the physically redundant interaction ( IC)  as well as the symmetric and cubic terms (la) 
and (Id). As was pointed out, the field transformation (3) induces a transformation in the 
space of interaction Hamiltonians H,(us,  uT, uA, 4) according to equation (5 ) .  This 
system provides a very simple example of the result that transformations induced in the 
space of interactions by field transformations leave invariant the renormalization 
group equations (compare Jona-Lasinio 1973, Wegner 1974), ie the 6’s in equations (9) 
are invariant under (5). (The equations (9) in common usage refer to the renormalized 
coupling constants rather than the bare ones which appear in the Hamiltonian itself; 
the transformations ( 5 )  are then the corresponding renormalized coupling constants. 
In the remainder of this article coupling constants should be understood as renormalized 
coupling constants.) 

For example if one calculates the 6 functions up to one loop in perturbation theory 
using the multiplicative renormalization group (Zinn-Justin 1975), one finds 

Us = -cuS+(a/2)[+g+&++u:)] (1  1 4  
U T  = - f U T  + 2auSuT (1  1b) 

U, = - + 2auSuA ( 1  1 4  
where a is a constant of order 1. These equations are invariant with respect to (5 ) .  The 
resulting fixed-point equations are degenerate and one obtains the circle of fixed points 

uf = r/2a, U * , ~ + U ; ~  = 4t2/9a2 (12) 
as shown in figure 3. This is a one-dimensional manifold of equivalent fixed points. 
The trajectories defined by the solutions of equation ( 1 1 )  lie in planes containing the 
us axis. As discussed by Wilson and Fisher (1972), in the uA = 0 plane there are two 
equivalent fixed points corresponding to two decoupled Ising systems ; they are the 
points uT = +26/3a on the circle (12). 

Figure 3. 

This simple example illustrates clearly the appearance of manifolds of equivalent 
fixed points whenever physically redundant couplings are allowed in the Hamiltonian. 
This problem was first raised by Wilson (Wilson and Kogut 1974, appendix) and Hubbard 
and Schofield (1972) and discussed generally by Wegner (1974). The problem of redundant 
couplings is not a serious one in the multiplicative renormalization group; they are 
readily spotted and simply discarded. This is not the case in the ‘functional formulation’ 
of the renormalization group (Wilson and Kogut 1974, Wegner 1972a) where the 
Hamiltonian is allowed to be an arbitrary functional of the field 4. Such a system has a 
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huge number of redundant couplings since it permits general redefinition of the field 

We finish with a cautionary remark illustrated by the two-component model : 
if one allows redundant variables so that there is a manifold of equivalent fixed points, 
then it is certainly not clear in general how to avoid the situation in which the effective 
coupling constants end up in a limit cycle (or other recurrent behaviour) in the space 
of equivalent fixed points. Indeed it is easy to construct a renormalization group trans- 
formation in the two-component model which will achieve this, namely instead of 
relating the renormalized to the bare vertex functions by a wavefunction renormalization 
Z1/’(u) d i j  for each external line, allow a matrix wavefunction renormalization 
Z’’2(u)RiXa(ln p ) )  where R ,  is a rotation as in equation (3)  and p is the renormalization 
point. (This is the analogue of the class tjn{S} of renormalization group transformations 
considered by Wegner (1974); the renormalization group equations for matrix wave- 
function renormalization are noted by Brezin et a1 (1974).) One then finds that equations 
( 1  1) are replaced by 

4 -f (4). 

C A  = - CUA + 2auSu” + & U T .  ( 134  

If # 0 these equations have no fixed points with us # 0. In particular if a = constant, 
what was previously a circle of equivalent fixed points (equation (12)) becomes a (un- 
stable) limit cycle for the system (13). 

Now it is clear in this example that the renormalization group transformation which 
produces this behaviour is a pretty stupid one to use, because for example the direction 
of the easy axes of the system will rotate as one changes the renormalization point. 
However it is certainly not as easy to see how to avoid wandering in the space of equiva- 
lent fixed-point Hamiltonians when the redundancy permits general field transfor- 
mations of the form 4 + f(4). 
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